{rfName}
GL

Indexat a

Llicència i ús

Citacions

Altmetrics

Grant support

This research was partially supported by MCIN/AEI/10.13039/501100011033 (PhD grant PRE2019-089210 and project PID2021-123637NB-I00 "CURLING"), INCIBE (project "HERMES" and INCIBE-URV cybersecurity chair), the European Commission (project H2020-871042 "SoBigData++"), the Government of Catalonia (ICREA Acad`emia Prizes to J. Domingo-Ferrer and to D. Sanchez, and grant 2021 SGR 00115), PNRR -M4C2 -Investimento 1.3, Partenariato Esteso PE00000013 -"FAIR -Future Artificial Intelligence Research" -Spoke 1 "Human-centered AI", funded by the European Commission under the NextGeneration EU programme, PNRR -"SoBigData.it -Strengthening the Italian RI for Social Mining and Big Data Analytics" -Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Health and Digital Executive Agency (HaDEA). Neither the European Union nor the granting authority can be held responsible for them. Grant Agreement no. 101120763 -TANGO, ERC-2018-ADG G.A. 834756 XAI: Science and technology for the eXplanation of AI decision making (https://xai-project.eu/index.html).

Anàlisi d'autories institucional

Haffar, RamiAutor (correspondència)Sánchez D.Autor o coautorSanchez, DavidAutor o coautorDomingo-Ferrer, JosepAutor o coautor

Compartir

5 denovembre de 2024
Publicacions
>
Conferència publicada
No

GLOR-FLEX: Local to Global Rule-based EXplanations for Federated Learning

Publicat a:2024 Ieee International Conference On Fuzzy Systems, Fuzz-Ieee 2024. - 2024-01-01 (), DOI: 10.1109/FUZZ-IEEE60900.2024.10611878

Autors: Haffar, Rami; Naretto, Francesca; Sanchez, David; Monreale, Anna; Domingo-Ferrer, Josep

Afiliacions

Univ Pisa, KDDLab, Pisa, Italy - Autor o coautor
Univ Rovira & Virgili, CYBERCAT Ctr Cybersecur Res Catalonia, Dept Comp Engn & Math, Tarragona, Catalonia, Spain - Autor o coautor

Resum

The increasing spread of artificial intelligence applications has led to decentralized frameworks that foster collaborative model training among multiple entities. One of such frameworks is federated learning, which ensures data availability in client nodes without requiring the central server to retain any data. Nevertheless, similar to centralized neural networks, interpretability remains a challenge in understanding the predictions of these decentralized frameworks. The limited access to data on the server side further complicates the applicability of explainers in such frameworks. To address this challenge, we propose GLOR-FLEX, a framework designed to generate rule-based global explanations from local explainers. GLOR-FLEX ensures client privacy by preventing the sharing of actual data between the clients and the server. The proposed framework initiates the process by constructing local decision trees on each client's side to produce local explanations. Subsequently, by using rule extraction from these trees and strategically sorting and merging those rules, the server obtains a merged set of rules suitable to be used as a global explainer. We empirically evaluate the performance of GLOR-FLEX on three distinct tabular data sets, showing high fidelity scores between the explainers and both the local and global models. Our results support the effectiveness of GLOR-FLEX in generating accurate explanations that efficiently detect and explain the behavior of both local and global models.

Paraules clau

Explainable aiFederated learningGlocalGlocalxHoldaTrepan trees

Indicis de qualitat

Impacte i visibilitat social

Des de la dimensió d'influència o adopció social, i prenent com a base les mètriques associades a les mencions i interaccions proporcionades per agències especialitzades en el càlcul de les denominades "Mètriques Alternatives o Socials", podem destacar a data 2025-07-04:

  • L'ús d'aquesta aportació en marcadors, bifurcacions de codi, afegits a llistes de favorits per a una lectura recurrent, així com visualitzacions generals, indica que algú està fent servir la publicació com a base del seu treball actual. Això pot ser un indicador destacat de futures cites més formals i acadèmiques. Aquesta afirmació està avalada pel resultat de l'indicador "Capture", que aporta un total de: 16 (PlumX).

Anàlisi del lideratge dels autors institucionals

Aquest treball s'ha realitzat amb col·laboració internacional, concretament amb investigadors de: Italy.

Hi ha un lideratge significatiu, ja que alguns dels autors pertanyents a la institució apareixen com a primer o últim signant, es pot apreciar en el detall: Primer Autor (Haffar, Rami) i Últim Autor (Domingo Ferrer, Josep).

l'autor responsable d'establir les tasques de correspondència ha estat Haffar, Rami.